Description
https://leetcode.com/problems/design-parking-system/
Design a parking system for a parking lot. The parking lot has three kinds of parking spaces: big, medium, and small, with a fixed number of slots for each size.
Implement the ParkingSystem
class:
ParkingSystem(int big, int medium, int small)
Initializes object of theParkingSystem
class. The number of slots for each parking space are given as part of the constructor.bool addCar(int carType)
Checks whether there is a parking space ofcarType
for the car that wants to get into the parking lot.carType
can be of three kinds: big, medium, or small, which are represented by1
,2
, and3
respectively. A car can only park in a parking space of itscarType
. If there is no space available, returnfalse
, else park the car in that size space and returntrue
.
Example 1:
Input ["ParkingSystem", "addCar", "addCar", "addCar", "addCar"] [[1, 1, 0], [1], [2], [3], [1]] Output
[null, true, true, false, false]
Explanation ParkingSystem parkingSystem = new ParkingSystem(1, 1, 0); parkingSystem.addCar(1); // return true because there is 1 available slot for a big car parkingSystem.addCar(2); // return true because there is 1 available slot for a medium car parkingSystem.addCar(3); // return false because there is no available slot for a small car parkingSystem.addCar(1); // return false because there is no available slot for a big car. It is already occupied.
Constraints:
0 <= big, medium, small <= 1000
carType
is1
,2
, or3
- At most
1000
calls will be made toaddCar
Explanation
Create a dictionary for slot tracking.
Python Solution
class ParkingSystem:
def __init__(self, big: int, medium: int, small: int):
self.slot = {
1: big,
2: medium,
3: small
}
def addCar(self, carType: int) -> bool:
if self.slot[carType] == 0:
return False
self.slot[carType] = self.slot[carType] - 1
return True
# Your ParkingSystem object will be instantiated and called as such:
# obj = ParkingSystem(big, medium, small)
# param_1 = obj.addCar(carType)
- Time Complexity: O(1)
- Space Complexity: O(1)