Description
https://leetcode.com/problems/special-positions-in-a-binary-matrix/
Given a rows x cols matrix mat, where mat[i][j] is either 0 or 1, return the number of special positions in mat.
A position (i,j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).
Example 1:
Input: mat = [[1,0,0], [0,0,1], [1,0,0]] Output: 1 Explanation: (1,2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input: mat = [[1,0,0], [0,1,0], [0,0,1]] Output: 3 Explanation: (0,0), (1,1) and (2,2) are special positions.
Example 3:
Input: mat = [[0,0,0,1], [1,0,0,0], [0,1,1,0], [0,0,0,0]] Output: 2
Example 4:
Input: mat = [[0,0,0,0,0], [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,1]] Output: 3
Constraints:
- rows == mat.length
- cols == mat[i].length
- 1 <= rows, cols <= 100
- mat[i][j]is- 0or- 1.
Explanation
Find all the positions which are the only ‘1’ in their rows and check if these position are also the only ‘1’ in their columns.
Python Solution
class Solution:
    def numSpecial(self, mat: List[List[int]]) -> int:
        result = 0
        
        special_rows = []
        
        for i in range(len(mat)):
            row = mat[i]
            
            count = row.count(1)
            
            if count == 1:
                j = row.index(1)
                    
                special_rows.append([i, j])
        
        for x, y in special_rows:
            
            is_special = True
            for i in range(0, len(mat)):
                if i != x and mat[i][y] == 1:
                    is_special = False
                    break
            
            if is_special:
                result += 1
        
        return result
- Time Complexity: O(N).
- Space Complexity: O(1).