Description
https://leetcode.com/problems/balanced-binary-tree/
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: true
Example 2:
Input: root = [1,2,2,3,3,null,null,4,4] Output: false
Example 3:
Input: root = [] Output: true
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
. -104 <= Node.val <= 104
Explanation
Check if left and right subtrees are balanced and whether their height difference is no more than 1.
Java Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return maxDepth(root) != null;
}
private Integer maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
Integer leftDepth = maxDepth(root.left);
Integer rightDepth = maxDepth(root.right);
if (leftDepth == null || rightDepth == null) {
return null;
}
if (Math.abs(leftDepth - rightDepth) > 1) {
return null;
}
return Math.max(leftDepth, rightDepth) + 1;
}
}
Python Solution
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
if not root:
return True
if not root.left and not root.right:
return True
left_height = self.height_helper(root.left)
right_height = self.height_helper(root.right)
return self.isBalanced(root.left) and self.isBalanced(root.right) and abs(left_height - right_height) <= 1
def height_helper(self, root):
if not root:
return 0
if not root.left and not root.right:
return 1
left = self.height_helper(root.left)
right = self.height_helper(root.right)
return max(left, right) + 1
- Time Complexity: O(N)
- Space Complexity: O(N)
I found that very popular and helpful:
https://www.youtube.com/watch?v=hpfEHXK_lOc&ab_channel=EricProgramming