Description
https://leetcode.com/problems/binary-tree-level-order-traversal/
Given a binary tree, return the level order traversal of its nodes’ values. (ie, from left to right, level by level).
For example:
Given binary tree [3,9,20,null,null,15,7]
,
3 / \ 9 20 / \ 15 7
return its level order traversal as:
[ [3], [9,20], [15,7] ]
Explanation
Conduct a breadth-first search for level order traversal. Uses a queue to store the level nodes.
Java Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
List<Integer> level = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
result.add(level);
}
return result;
}
}
Python Solution
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
results = []
if not root:
return results
queue = []
queue.append(root)
while queue:
level_size = len(queue)
level = []
for i in range(level_size):
node = queue.pop(0)
level.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
results.append(level)
return results
- Time complexity: O(N) since each node is processed exactly once.
- Space complexity: O(N) to keep the output structure that contains N node values.
Your solution helped me understand Level Order Traversal. Thank you.
C# Solution :-
public class Solution {
public IList<IList> LevelOrder(TreeNode root) {
List<IList> AllList = new List<IList>();
var myqueue = new Queue();
if(root != null)
myqueue.Enqueue(root);
while(myqueue.Count>0)
{
int len = myqueue.Count;
var mylist = new List();
for(int i=0;i<len;i++)
{
var node = myqueue.Dequeue();
mylist.Add(node.val);
if (node.left != null)
myqueue.Enqueue(node.left);
if (node.right != null)
myqueue.Enqueue(node.right);
}
AllList.Add(mylist);
}
return AllList;
}
}