Description
https://leetcode.com/problems/closest-binary-search-tree-value-ii/
Given the root
of a binary search tree, a target
value, and an integer k
, return the k
values in the BST that are closest to the target
. You may return the answer in any order.
You are guaranteed to have only one unique set of k
values in the BST that are closest to the target
.
Example 1:
Input: root = [4,2,5,1,3], target = 3.714286, k = 2 Output: [4,3]
Example 2:
Input: root = [1], target = 0.000000, k = 1 Output: [1]
Constraints:
- The number of nodes in the tree is
n
. 1 <= k <= n <= 104
.0 <= Node.val <= 109
-109 <= target <= 109
Follow up: Assume that the BST is balanced. Could you solve it in less than O(n)
runtime (where n = total nodes
)?
Python Solution
First, use in order traverse to get tree values in ascending order. Then do a binary search to find the index that can be used to insert the target value. Start from the index, find to left and to right, total k values which are closer to the target.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def closestKValues(self, root: Optional[TreeNode], target: float, k: int) -> List[int]:
inorder_values = []
self.dfs(root, inorder_values)
left = self.find_lower_index(inorder_values, target)
right = left + 1
results = []
for _ in range(k):
if self.is_left_closer(inorder_values, left, right, target):
results.append(inorder_values[left])
left -= 1
else:
results.append(inorder_values[right])
right += 1
return results
def is_left_closer(self, nums, left, right, target):
if left < 0:
return False
if right >= len(nums):
return True
return target - nums[left] < nums[right] - target
def find_lower_index(self, nums, target):
start = 0
end = len(nums) - 1
while start + 1 < end:
mid = start + (end - start) // 2
if nums[mid] < target:
start = mid
else:
end = mid
if nums[end] < target:
return end
if nums[start] < target :
return start
return -1
def dfs(self, root, results):
if not root:
return
self.dfs(root.left, results)
results.append(root.val)
self.dfs(root.right, results)
- Time Complexity: O(N).
- Space Complexity: O(N).
Snap packages are widely used all across different Linux distributions. These packages are easier to create, install, and manage and they are thereread more , with screen shot and code snipets at
How to Install and Use Snapd on Debian 11