Description
https://leetcode.com/problems/house-robber/
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: [1,2,3,1] Output: 4 Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3). Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: [2,7,9,3,1] Output: 12 Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1). Total amount you can rob = 2 + 9 + 1 = 12.
Explanation
Dynamic programming approach. f(k) = max(f(k – 2) + Ak, f(k – 1))
Python Solution
class Solution:
def rob(self, nums: List[int]) -> int:
if nums == None or len(nums) == 0:
return 0
if len(nums) == 1:
return nums[0]
n = len(nums)
f = [0 for i in range(0, n)]
f[0] = nums[0]
f[1] = max(f[0], nums[1])
for i in range(2, n):
f[i] = max(f[i - 1], f[i - 2] + nums[i])
return f[n - 1]
- Time complexity: O(n).
- Space complexity: O(n).
One Thought to “LeetCode 198. House Robber”